1,597 research outputs found

    Comparative study on the application of evolutionary optimization techniques to orbit transfer maneuvers

    Get PDF
    Orbit transfer maneuvers are here considered as benchmark cases for comparing performance of different optimization techniques in the framework of direct methods. Two different classes of evolutionary algorithms, a conventional genetic algorithm and an estimation of distribution method, are compared in terms of performance indices statistically evaluated over a prescribed number of runs. At the same time, two different types of problem representations are considered, a first one based on orbit propagation and a second one based on the solution of Lambert’s problem for direct transfers. In this way it is possible to highlight how problem representation affects the capabilities of the considered numerical approaches

    Multi-objective design of robust flight control systems

    Get PDF
    A multi–objective evolutionary algorithm is used in the framework of H1 control theory to find the controller gains that minimize a weighted combination of the infinite–norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements). After considering a single operating point for a level flight trim condition of a F-16 fighter aircraft model, two different approaches will then be considered to extend the domain of validity of the control law: 1) the controller is designed for different operating points and gain scheduling is adopted; 2) a single control law is designed for all the considered operating points by multiobjective minimisation. The two approaches are analyzed and compared in terms of effectiveness of the design method and resulting closed loop performance of the system

    Model predictive control architecture for rotorcraft inverse simulation

    Get PDF
    A novel inverse simulation scheme is proposed for applications to rotorcraft dynamic models. The algorithm adopts an architecture that closely resembles that of a model predictive control scheme, where the controlled plant is represented by a high-order helicopter model. A fast solution of the inverse simulation step is obtained on the basis of a lower-order, simplified model. The resulting control action is then propagated forward in time using the more complex one. The algorithm compensates for discrepancies between the models by updating initial conditions for the inverse simulation step and introducing a simple guidance scheme in the definition of the tracked output variables. The proposed approach allows for the assessment of handling quality potential on the basis of the most sophisticated model, while keeping model complexity to a minimum for the computationally more demanding inverse simulation algorithm. The reported results, for an articulated blade, single main rotor helicopter model, demonstrate the validity of the approach

    Evolutionary design of a full-envelope full-authority flight control system for an unstable high-performance aircraft

    Get PDF
    The use of an evolutionary algorithm in the framework of H1 control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with a complete full-authority longitudinal control system for an unstable high-performance jet aircraft featuring (i) a stability and control augmentation system and (ii) autopilot functions (speed and altitude hold). Constraints on closed-loop response are enforced, that representing typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized at different altitudes for a given equivalent airspeed. A multiobjective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal non-linear model of the aircraft

    Design and Development of the Engine Unit for a Twin-Rotor Unmanned Aerial Vehicle

    Get PDF
    Advanced computer-aided technologies played a crucial role in the design of an unconventional Uninhabited Aerial Vehicle (UAV), developed at the Turin Technical University and the University of Rome “La Sapienza”. The engine unit of the vehicle is made of a complex system of three two stroke piston engines coupled with two counter-rotating three-bladed rotors, controlled by rotary PWM servos. The focus of the present paper lies on the enabling technologies exploited in the framework of activities aimed at designing a suitable and reliable engine system, capable of performing the complex tasks required for operating the proposed rotorcraft. The synergic use of advanced computational tools for estimating the aerodynamic performance of the vehicle, solid modeling for mechanical components design, and rapid prototyping techniques for control system logic synthesis and implementation will be presented.

    On continuation-passing transformations and expected cost analysis

    Get PDF
    We define a continuation-passing style (CPS) translation for a typed \u3bb-calculus with probabilistic choice, unbounded recursion, and a tick operator - for modeling cost. The target language is a (non-probabilistic) \u3bb-calculus, enriched with a type of extended positive reals and a fixpoint operator. We then show that applying the CPS transform of an expression M to the continuation \u3bb v. 0 yields the expected cost of M. We also introduce a formal system for higher-order logic, called EHOL, prove it sound, and show it can derive tight upper bounds on the expected cost of classic examples, including Coupon Collector and Random Walk. Moreover, we relate our translation to Kaminski et al.'s ert-calculus, showing that the latter can be recovered by applying our CPS translation to (a generalization of) the classic embedding of imperative programs into \u3bb-calculus. Finally, we prove that the CPS transform of an expression can also be used to compute pre-expectations and to reason about almost sure termination

    Single axis pointing for underactuated spacecraft with a residual angular momentum

    Get PDF
    The problem of aiming a generic body-fixed axis along an inertially fixed direction is dealt with for an underactuated spacecraft in the presence of a non-zero residual angular momentum, when only two reaction wheels can exchange angular momentum with the spacecraft platform. An analytical condition for the feasibility of the desired pointing is derived first, together with a closed-form solution for the corresponding attitude with zero platform angular rate. A nonlinear controller is then developed in the framework of singular perturbation theory, enforcing a two-timescale response to the system. Convergence to the desired attitude, when the pointing direction falls within admissible limits, is then proved for rest-to-rest maneuvers and randomly generated initial tumbling conditions for a configuration representative of a small-size satellite

    Optimal cruise performance of a conventional helicopter

    Get PDF
    This article presents an analytical framework for investigating the cruise performance of conventional helicopter configurations. Starting from the analysis of power required in straight-and-level flight, endurance and range performance of turbine- and battery-powered rotorcraft are considered, for which it is assumed that fuel consumption and constant-power battery discharge models are, respectively, made available. The original contributions of the article are represented by (a) a closed-form formulation for expected endurance and range for both classes of vehicles, where electrical helicopters have not been dealt with in previous studies and (b) the analytical derivation of an accurate estimate for best endurance and best range airspeeds as a function of relevant system parameters. The approach is validated by analyzing two reference helicopters, showing good physical insight and better accuracy with respect to other techniques available in the literature, for the identification of an energy-efficient cruise flight strategy

    Influence of micro-notches on the fatigue strength and crack propagation of unfilled and short carbon fiber reinforced PEEK

    Get PDF
    Short carbon fiber reinforced (SCFR) PEEK is a highly attractive material for lightweight structures; improving knowledge about the influence of local imperfections on its fatigue behavior is essential for the design of real components. To this aim, fatigue strength and crack propagation of two grades of SCFR PEEK and neat matrix were investigated by testing at different stress levels specimens with a micro-notch consisting of a small blind hole (range diameter 0.1–1 mm). Overall, the presence of a micro-notch resulted in a decrease of fatigue strength compared to un-notched condition, but with different sensitivity and crack propagation patterns; while a higher fiber volume fraction enhanced fatigue strength and resistance to crack propagation, the combination of a lower fiber content and inclusion of additive particles had a negative effect. Crack propagation in the notched region was also evaluated. The average values of Paris' law exponential coefficients were similar and within the range of literature values, without apparent correlation with reinforcement type. Preliminary investigations in the presence of the smallest micro-notches seem to indicate the presence of a threshold size below which the influence of a small notch is comparable with that of material inherent defects, but further testing is necessary
    • 

    corecore